Хозяйство

Как охладить проточную воду в трубопроводе

Как охладить проточную воду в трубопроводе

Система забортной воды

Для приема забортной воды в систему охлаждения в МКО предусмотрены днищевой и бортовой кингстонные ящики, из которых вода через фильтры поступает в приемный ящик забортной воды. Система обслуживается двумя охлаждающими насосами RVD-450E, один из которых является резервным. Резервный насос включается автоматически при падении давления воды в системе. Насос принимает забортную воду из приемного ящика забортной воды и подает через регулятор температуры к холодильникам пресной воды. Этот регулятор, в зависимости от температуры забортной воды на выходе из насосов, направляет воду из холодильников за борт через невозвратно-запорный клапан и на прием к охлаждающим насосам через задвижку и невозвратно-запорный клапан в кингстонный ящик или в приемную магистраль охлаждающих насосов. К одному из главных охлаждающих насосов подведена магистраль аварийного осушения МО через клапан. Воздушные трубы из кингстонных ящиков объединены и выведены на открытую часть ВП и заканчивается гуськом. Для выпуска воздуха из холодильников предусмотрены трубы, которые присоединены к воздушной трубе из кингстонных ящиков. Рисунок 20. Принципиальная схема охлаждения забортной водой СЭУ

Система пресной воды

В систему охлаждения пресной водой входят: система пресной воды охлаждения главного двигателя; система пресной воды охлаждения дизель-генераторов. Система охлаждения пресной водой предназначена для: охлаждения главного двигателя и дизель-генераторов; прогрева неработающего главного двигателя подогревателем пресной воды; подачи греющей воды на водоопреснительные установки; Общее описание и основные технические данные системы охлаждения главного двигателя пресной водой Заполнение водой системы производится электронасосом перекачки пресной воды из цистерны запаса котельной воды через клапаны и в расширительную цистерну. Вода подается также в цистерну присадок через клапан, а из нее через клапан и кран — в расширительную цистерну. Из расширительной цистерны через клапан производится заполнение системы водой, а также пополнение утечек во время работы системы. Система охлаждения главного двигателя обслуживается двумя охлаждающий электронасосами пресной воды, один из которых является резервным. Резервный насос включается автоматически при падении давления воды в системе. К главному двигателю вода поступает через регулятор температуры воды, подаваемой насосом, регулирует количество воды, проходящей через холодильники, обеспечивая необходимый температурный режим охлаждения двигателя. Пресная вода из главного двигателя поступает в деаэрационный бак, в котором происходит отделение воздуха и паровоздушной смеси. На магистрали пресной воды после охлаждающих насосов ГД производится отбор греющей воды для опреснительных установок. Для подогрева неработающего главного двигателя в системе предусмотрен подогреватель пресной воды, к которому подается пар из системы обогревания. Система охлаждения дизель-генераторов пресной водой. Заполнение водой системы производится электронасосом перекачки пресной воды из цистерны запаса котельной воды через клапаны. Вода подается в расширительную цистерну дизель-генераторов оттуда через клапана производится заполнение системы, а также пополнение утечек во время работы системы. Система пресной воды каждого дизель-генератора обслуживается своим центробежным насосом, навешанным на двигатель. Подача воды в рубашки дизель-генераторов производится через холодильники пресной воды, задвижки. Для поддержания постоянной температуры пресной воды, у выпуска охлаждающей воды из двигателей установлен термостатический клапан. Для постановки неработающего дизель-генератора в «горячий» резерв в системе пресной воды двигателя предусмотрен электрический подогреватель. Как охладить проточную воду в трубопроводе Рисунок 21. Принципиальная схема охлаждения СЭУ пресной водой В случае повреждения системы охлаждения пресной водой дизель-генераторы могут охлаждаться забортной водой при снятии глухих фланцев, разделяющих системы пресной и забортной воды. Отвод паровоздушной смеси от дизель-генераторов осуществляется в расширительную цистерну дизель-генераторов. Трубопроводы системы окрашены под цвет помещения. На трубопроводах пресной воды нанесены отличительные знаки два широких кольца зеленого цвета. Для контроля за работой системы предусмотрены манометры, местные и дистанционные термометры, сигнализаторы нижнего уровня, сигнализаторы давления и температуры.

Система сжатого воздуха

Система сжатого воздуха среднего и низкого давления обеспечивает: Заполнение сжатым воздухом от электрокомпрессоров баллонов пускового воздуха ГД и ДГ, низкого давления заполнение баллонов аппаратов СО; подачу сжатого воздуха из баллонов в пусковые устройства двигателей при запуске; продувание масляных фильтров главного двигателя; судовые нужды, пневмоинструмент и пневмоцистерны. Система сжатого воздуха высокого давления обеспечивает: Заполнение от электрокомпрессора баллонов от пусковых баллонов аварийного дизель-генератора и дизеля мотопомпы баллонов пневмопитания системы и баллонов спасательных шлюпок.

Системы воздухоснабжения и газовыпуска

Все грузовые и отстойные танки оборудованы газоотводной системой, автономной для каждого, танка и предназначенной для обеспечения газообмена между грузовым танком и атмосферой. Каждый грузовой и отстойный танк оборудован высокоскоростным газовыпускным устройством и вакуумным клапаном с пламяпрерываюшей сеткой. Выпуск газа из танков через высокоскоростное газовыпускное устройство осуществляется со скоростью не менее 30 м/с. Как охладить проточную воду в трубопроводе Рисунок 22. Принципиальная схема системы сжатого воздуха СЭУ Площадь сечения труб автономной газоотводной системы обеспечивает удаление газов из одного танка при грузовых операциях с производительностью не более 1100м3/ч. Система газовыхлопа главного и вспомогательных двигателей Система газовыхлопа обеспечивает отвод выхлопных газов от главного двигателя через утилизационный котел, вспомогательных дизель-генераторов, аварийного дизель-генератора и дизеля мотопомпы через глушители в атмосферу. Утилизационный котел и все глушители оборудованы искроулавливателями. Как охладить проточную воду в трубопроводе Рисунок 23. Принципиальная схема газовыпускной системы СЭУ Выхлопные трубы изолированы и обшиты металлическим кожухом. В системе газовыхлопа предусмотрен постоянный дренаж гудрона и аварийный слив воды от утилизационного котла. Что такое? Чиллер – это холодильный агрегат, применяемый для охлаждения и нагревания жидких теплоносителей в центральных системах кондиционирования, в качестве которых могут выступать приточные установки или фанкойлы.

В основном чиллер для охлаждения воды используют на производстве — охлаждают различное оборудование. У воды лучше характеристики по сравнению со смесью гликоля, поэтому работа на воде более эффективна. Широкий диапазон мощности дает возможность использовать чиллер для охлаждения в помещениях различных размеров: от квартир и частных домов до офисов и гипермаркетов. Кроме того, он применяется в пищевой промышленности для и напитков, в спортивно-оздоровительной сфере – для охлаждения катков и ледовых площадок, в фармацевтике – для охлаждения медикаментов.

Существуют следующие основные типы чиллеров: моноблок, воздушный конденсатор, гидромодуль и компрессор находятся в одном корпусе; чиллер с выносным конденсатором на улицу (холодильный модуль располагается в помещении, а конденсатор выносится на улицу); чиллер с водяным конденсатором (используют когда нужны минимальные размеры холодильного модуля в помещении и нет возможности использовать выносной конденсатор); тепловой насос, с возможностью нагрева или охлаждения теплоносителя.

Принцип работы чиллера

Теоретической основой, на которой построен принцип работы холодильников, кондиционеров, холодильных установок, является второе начало термодинамики. Охлаждающий газ (фреон) в холодильных установках совершает так называемый обратный Цикл Ренкина — разновидность обратного Цикла Карно . При этом основная передача тепла основана не на сжатии или расширении цикла Карно, а на фазовых переходах — и конденсации. Промышленный чиллер состоит из трех основных элементов: компрессора, конденсатора и испарителя. Основная задача испарителя – это отвод тепла от охлаждаемого объекта. С этой целью через него пропускаются вода и хладагент. Закипая, хладагент отбирает энергию у жидкости. В результате этого вода или любой другой теплоноситель охлаждаются, а холодильный агент – нагревается и переходит в газообразное состояние. После этого газообразный холодильный агент попадает в компрессор, где воздействует на обмотки электродвигателя компрессора, способствуя их охлаждению. Там же горячий пар сжимается, вновь нагреваясь до температуры в 80-90 ºС. Здесь же он смешивается с маслом от компрессора.

В нагретом состоянии фреон поступает в конденсатор, где разогретый холодильный агент охлаждается потоком холодного воздуха. Затем наступает завершающий цикл работы: хладагент из теплообменника попадает в переохладитель, где его температура снижается, в результате чего фреон переходит в жидкое состояние и подается в фильтр-осушитель. Там он избавляется от влаги. Следующим пунктом на пути движения хладагента является терморасширительный вентиль, в котором давление фреона понижается. После выхода из терморасширителя холодильный агенент представляет собой пар низкого давления в сочетании с жидкостью. Эта смесь подается в испаритель, где хладагент вновь закипает, превращаясь в пар и перегреваясь.

Перегретый пар покидает испаритель, что является началом нового цикла. Как охладить проточную воду в трубопроводе

Схема работы промышленного чиллера

# 1 Компрессор (Compressor) Компрессор имеет две функции в холодильном цикле. Он сжимает и перемещает пары хладогента в чиллере. При сжатии паров происходит повышение давления и температуры. Далее сжатый газ поступает в где он охлаждается и превращается в жидкость, затем жидкость поступает в испаритель (при этом её давление и температура снижается), где она кипит, переходит в состояние газа, тем самым забирая тепло от воды или жидкости, которая проходит через испаритель чиллера. После этого пары хладагента поступают снова в компрессор для повторения цикла. # 2 Конденсатор воздушного охлаждения (Air-Cooled Condenser) Конденсатор с воздушным охлаждением представляет собой теплообменник, где тепло, поглощаемое хладагентом, выделяется в окружающее пространство. В конденсатор обычно поступает сжатый газ — фреон, который охлаждаются до и, конденсируясь, переходит в жидкую фазу. Центробежный или осевой вентилятор подают поток воздуха через конденсатор. # 3 Реле высокого давления (High Pressure Limit) Защищает систему от избыточного давления в контуре хладагента. # 4 Манометр высокого давления (High Pressure Pressure Gauge) Обеспечивает визуальную индикацию давления конденсации хладагента. # 5 Жидкостной ресивер (Liquid Receiver) Используется для хранения фреона в системе. # 6 Фильтр-осушитель (Filter Drier) Фильтр удаляет влагу, грязь, и другие инородные материалы из хладагента, который повредит холодильной системе и снизить эффективность. # 7 Соленоиндный вентиль (Liquid Line Solenoid) Соленоидный клапан — это просто электрически управляемый запорный кран. Он управляет потоком хладагента, который закрывается при остановке компрессора. Это предотвращает попадание жидккого хладагента в испаритель, что может вызвать гидроудар. Гидроудар может привести к серьезному повреждению компрессора. Клапан открывается, когда компрессор включен. # 8 Смотровое стекло (Refrigerant Sight Glass) Смотровое стекло помогает наблюдать поток жидкого хладагента. Пузырьки в потоке жидкости свидетельствуют о нехватке хладагента. Индикатор влажности обеспечивает предупреждение в том случае, если влага поступает в систему, указывая, что требуется техническое обслуживание. Зеленый индикатор не сигнализирует никакого содержания влаги. А желтые сигналы индикатора, что система загрязнена с влагой и требует технического обслуживания. # 9 Терморегулирующий вентиль (Expansion Valve) Терморегулирующий вентиль или ТРВ — это регулятор, положение регулирующего органа (иглы) которого обусловлено температурой в испарителе и задача которого заключается в регулировании количества хладагента, подаваемого в испаритель, в зависимости от перегрева паров хладагента на выходе из испарителя. Следовательно, в каждый момент времени он должен подавать в испаритель только такое количество хладагента, которое, с учетом текущих условий работы, может полностью испариться. # 10 Горячий Перепускной клапан газа (Hot Gas Bypass Valve) Hot Gas Bypass Valve (регуляторы производительности) используются для приведения производительности компрессора к фактической нагрузке на испаритель (устанавливаются в байпасную линию между сторонами низкого и высокого давления системы охлаждения). Перепускной клапан горячего газа (не входит в стандартную комплектацию чиллеров) предотвращает короткое циклирование компрессора путем модуляции мощности компрессора. При активации, клапан открывается и перепускает горячий газ холодильного агента с нагнетания в жидкостной поток хладагента, поступающего в испаритель. Это уменьшает эффективную пропускную способность системы. # 11 Испаритель (Evaporator) Испаритель это устройство, в котором жидкий хладагент кипит, поглощая тепло при испарении, у проходящего через него охлаждающей жидкости. # 12 Манометр низкого давления фреона (Low Pressure Refrigerant Gauge) Обеспечивает визуальную индикацию давления испарения хладагента. # 13 Предельное Низкое давление хладагента (Low Refrigerant Pressure Limit) Защищает систему от низкого давления в контуре хладагента, чтобы вода не замерзла в испарителе. # 14 Насос охлаждающей жидкости (Coolant Pump) Насос для циркуляции воды по охлаждаемому контуру # 15 Ограничение температуры замерзания (Freezestat Limit) Предотвращает замерзание жидкости в испарителе # 16 Датчик температуры Датчик, который показывает температуру воды в охлаждающем контуре # 17 Хладагент манометр (Coolant Pressure Gauge) Обеспечивает визуальную индикацию давления теплоносителя, подаваемого на оборудование. # 18 Автоматический долив (Water Make-Up Solenoid) Включается когда вода в емкости снижается ниже допустимого предела. Соленоидный клапан открывается и происходит долив в емкость от водопровода до нужного уровня. Далее клапан закрывается. # 19 Резервуар Уровень поплавковый выключатель (Reservoir Level Float Switch) Поплавковый выключатель. Открывается когда уровень воды в емкости снижается. # 20 Датчик температуры 2 (From Process Sensor Probe) Датчик температуры, который показывает температуру нагретой воды, которая возвращается от оборудования. # 21 Реле протока (Evaporator Flow Switch) Защищает испаритель от замерзания в нем воды (когда слишком низкий проток воды). Защищает насос от сухого хода. Сигнализирует отсутствие потока воды в чиллере. # 22 Емкость (Reservoir) Для избежания частых пусков компрессоров используют емкость увеличенного объема. Чиллер с водяным охлаждением конденсатора отличается от воздушного — типом теплообменника (вместо трубчато-ребристого теплообменника с вентилятором используется кожухотрубный или пластинчатый, который охлаждается водой). Водяное охлаждение конденсатора осуществляется оборотной водой из сухого охладителя ( , драйкулера) или градирни. В целях экономии воды предпочтительным является вариант с установкой сухой градирни с водяным замкнутым контуром. Основные преимущества чиллера с водяным конденсатором: компактность; возможность внутреннего размещения в маленьком помещении.

Вопросы и ответы

Можно ли чиллером охлаждать жидкость на проток более, чем на 5 градусов? Чиллер можно использовать в замкнутой системе и поддерживать заданную температуру воды, например, 10 градусов, даже если возврат будет с температурой 40 градусов. Есть чиллеры, которые охлаждают воду на проток. Это в основном используется для охдаждения и газирования напитков, лимонадов. Что лучше чиллер или драйкулер? Температура при использовании драйкулера зависит от температуры окружающей среды. Если, например, на улице будет +30, то хладоноситель будет с температурой +35…+40С. Драйкулер используют в основном в холодное время года для экономии электроэнергии. Чиллером можно получать заданную температуру в любое время года. Можно изготовить низкотемпературный чиллеры для получения температуры жидкости с отрицательной температурой до минус 70 С (хладоносителем при такой температуре является в основном спирт). Какой чиллер лучше — с водяным или воздушным конденсатором? Чиллер с водяным охлаждением имеет компактные размеры, поэтому могут размещаться в помещении и не выделяют тепло. Но для охлаждения конденсатора требуется холодная вода. Чиллер с водяным конденсатором имеет более низкую стоимость, но может дополнительно потребоваться сухая градирня, если нет источника воды — водопровод или скважина. В чем отличие чиллеров с тепловым насосом и без него? Чиллер с тепловым насосом может работать на обогрев, т. е не только охлаждать хладоноситель, но и нагревать его. Необходимо учитывать, что с понижением температуры нагрев ухудшается. Наиболее эффективен нагрев когда температура опускается не ниже минус 5. На какое расстояние можно выносить воздушный конденсатор? Обычно конденсатор можно вынести на расстояние до 15 метров. При установке системы отделения масла выснок конденсатора возможен до 50 метров, при условии правильного подбора диаметра медных магистралей между чиллером и выносным конденсатором. До какой минимальной температуре работает чиллер? При установке системы зимнего пуска работа чиллера возможно до окружающей температуры минус 30…-40. А при установке вентиляторов арктического исполнения — до минус 55.

Виды и типы схем установок охлаждения жидкости (чиллеры)

Как охладить проточную воду в трубопроводе Применяется в случае, если перепад температур ∆Т ж = (Т Нж – Т Кж) ≤ 7ºС (охлаждение технической и минеральной воды)

2. Схема охлаждения жидкости с использованием промежуточного хладоносителя и вторичного теплообменного аппарата.

Применяется в случае, если перепад температур ∆Т ж = (Т Нж – Т Кж) > 7ºС или для охлаждения пищевых продуктов, т. е. охлаждение во вторичном разборном теплообменнике. Для этой схемы необходимо правильно определить расход промежуточного хладоносителя: G х – массовый расход промежуточного хладоносителя кг/ч G ж – массовый расход охлаждаемой жидкости кг/ч n – кратность циркуляции промежуточного хладоносителя где: C Рж – теплоёмкость охлаждаемой жидкости, кДж/(кг´ К) C Рх – теплоёмкость промежуточного хладоносителя, кДж/(кг´ К) Системы охлаждения энергетической установки служат для отвода теплоты от рабочих втулок, крышек, поршней главных и вспомогательных дизелей, для охлаждения масла и воздуха (в двигателях с надувом). В современных дизельных установках таких систем четыре: 1) система охлаждения пресной водой цилиндровых втулок, крышек и газовых турбин; 2) системы охлаждения пресной водой или маслом головок поршней; 3) система охлаждения пресной водой, маслом или топливом форсунок; 4) система охлаждения забортной водой пресной воды и масла в системах охлаждения и смазки и охлаждения воздуха в системе наддува.

Принципиальная Схема системы охлаждения зависит от рода жидкости, охлаждающей форсунки и поршни. Двигатели, у которых поршни охлаждаются маслом, а форсунки – топливом, имеют один контур пресной воды, который служит для охлаждения втулок, крышек, цилиндров и корпусов газотурбонагревателей; для охлаждения поршней; для охлаждения форсунок. Каждый контур обслуживается своими циркуляционными насосами, теплообменниками и расширительной цистерной. Основным преимуществом такой системы является то, что пресная вода, охлаждающая цилиндры, не загрязняется маслом, попадающим в систему с поверхности труб телескопического устройства охлаждения поршней, и топливом, которое может попадать в воду через плоскость разъема форсунок. Принципиальная схема контура пресной воды (рис. 3) для охлаждения цлиндров и газотурбокомпрессоров (ГТК) включает циркуляционные насосы 5, расширительную цистерну 13, водоохладители 4, включенные параллельно, байпасный клапан 3, управляемы термодатчиком, водяные коллекторы 7 и 1. Насосы подают воду в коллектор 7, откуда она поступает на охлаждение цилиндров и корпусов 8 ГТК и выходит в коллектор 1. Воду, выходящую из двигателя и корпусов ГТК, можно пропускать через водоохладители или пропускать часть воды через байпасный клапан 3 в приемную полость насосов помимо водоохладителя, поддерживая заданную температуру на всех режимах работы двигателя. Труба 10 соединяет приемные полости насосов с расширительной цистерной, обеспечивая необходимый подпор. Воздух и водяные пары вместе с водой отводятся из полостей охлаждения двигателя и ГТК по трубам 15 в расширительную цистерну. Труба 12 служит для пополнения воды в системе. По трубе 11, в которой имеется смотровое стекло. Вода из расширительной цистерны в случае ее переполнения переливается в междудонную. Воздух и пары воды удаляются из системы в атмосферу по трубе 14. При подготовке главного двигателя к пуску горячая вода, выходящая из системы охлаждения дизель –генераторов, поступает в коллектор 7. При работе главного двигателя дизель-генераторы могут охлаждаться водой, которая отводится по трубам 2,9 или 6. Рис. 3 Принципиальная схема контура пресной воды системы охлаждения. Система пресной воды , так же как и система забортной воды, во время хода обслуживается главным насосом пресной воды, а на стоянке – портовым насосом пресной воды. Для судов с неограниченным районом плавания в системе охлаждения устанавливают два водоохладителя, каждый из которых обеспечивает отвод теплоты при нагрузке главного двигателя 60 %, вспомогательных двигателей 100% и температуре забортной воды 30 0 С. Давление воды в системе охлаждения для каждого типа установки указывают в инструкции.

Оно составляет 0,15-0,25 МПа, причем давление в системе пресной воды должно быть на 0,03-0,05 МПа больше, чем в системе забортной воды. Это нужно для того, чтобы при нарушении плотности холодильников забортная вода не могла попасть в систему пресной воды. Температуру входящей и выходящей воды также указывают в инструкции. Она должна быть в пределах 50-60 0 С на входе и 60-70 0 С на выходе. В высокооборотных тронковых дизелях температура воды на выходе из дизеля поддерживается в пределах 75-90 0 С. Температура пресной воды в системе охлаждения регулируется перепуском выходящей из дизеля воды мимо водоохладителя во всасывающую магистраль насоса 5. Перепуск воды осуществляется регулятором температуры, который открывает клапан 3 или заслонку для перепуска воды мимо холодильника. Схема системы забортной воды показана на рис. 4. Вода из бортовых 10 или днищевых 12 кингстонов через фильтры 11 поступает к насосам забортной воды 9. Работающий насос подает ее к водо — водяным охладителям 6, к маслоохладителям 7 и воздухоохладителю 4. Все теплообменники включены параллельно. Маслоохладитель 7 и воздухоохладитель 4 имеют байпасные трубопроводы 5, позволяющие регулировать температуру масла и продувочного воздуха путем перепуска части воды мимо охладителей. Через клинкеты 1 правого и левого бортов вода уходит за борт. Трубопровод рециркуляции 2 при плавании во льдах перепускает часть воды в кингстонный ящик, откуда она вместе с водой, поступающей из кингстона, направляется в приемную полость насоса. Тем самым исключается срыв подачи воды при засорении кингстона мелким льдом или при замерзании его приемной решетки. Для прокачки всех теплообменников используют балластный насос 8, который принимает воду из носовых цистерн, подает ее по системе забортной воды, а затем по трубе 3 она идет в кормовую цистерну. Зная производительность насоса и емкость цистерн, производят попеременную перекачку воды с носа на корму и обратно, не останавливая насоса. По трубам 13 вода идет на прокачку теплообменников дизель – генераторов и компрессоров.

Система охлаждения предназначена для отвода тепла от деталей двигателя, подверженных нагреву горячими газами и для поддержания допустимых температур, определяемых жаропрочностью материалов, термостабильностью масла и оптимальными условиями протекания рабочего процесса. В зависимости от конструкции ДВС количество тепла, отводимого в охлаждающую жидкость, составляет 15—35 % тепла, выделяемого при сгорании топлива в цилиндрах. В качестве охлаждающей жидкости используется пресная и забортная вода, масло и дизельное топливо. Для судовых ДВС используются проточная и замкнутая системы охлаждения.

При проточной системе охлаждение двигателя осуществляется забортной водой, прокачиваемой насосом. Система забортной воды включает следующие основные элементы: кингстонные ящики с кингстонами, фильтры, насосы, трубопроводы, арматуру и приборы управления, сигнализации и контроля. Согласно Правилам Регистра СССР система должна иметь один днищевой и один—два бортовых кингстона. Система забортной воды может иметь два насоса, один из которых является резервным одновременно для пресной и забортной воды. Аварийное охлаждение двигателей может обеспечиваться от насосов холодильной установки или пожарной системы судна. Проточная система охлаждения проста по конструкции, требует небольшого количества насосов, но двигатель охлаждается относительно холодной забортной водой (не более 50—55 С). Выше температуру поддерживать нельзя, так как уже при 45 С начинается интенсивное отложение солей на поверхности охлаждения. Кроме того, все полости системы, в которых протекает охлаждающая забортная вода, сильно загрязняются шламом. Отложения солей и шлама значительно ухудшают теплопередачу и нарушают нормальное охлаждение двигателя. Омываемые поверхности подвергаются значительной коррозии. Современные судовые ДВС имеют, как правило, замкнутую (двухконтурную) систему охлаждения, при которой в двигателе циркулирует пресная забортная вода, охлаждаемая в специальных водяных холодильниках. Водяные холодильники прокачиваются забортной водой. Одним из основных преимуществ этой системы является возможность поддержания охлаждаемых полостей в более чистом состоянии, так как система заполнена пресной или специально очищенной водой. Это в свою очередь позволяет легко поддерживать наивыгоднейшую температуру охлаждающей воды в зависимости от режима работы двигателя. Температура пресной воды, выходящей из двигателя, поддерживается следующая: для тихоходных ДВС 65—70 С, для быстроходных — 80—90 С. Замкнутая система охлаждения является более сложной, чем проточная и требует повышенного расхода энергии на работу насосов. Для защиты поверхностей втулок и блоков со стороны охлаждения от коррозионно-кавитационного разрушения и образования накипи применяют антикоррозионные эмульсионные масла ВНИИНП—117/119, «Шелл Дромус ойл В» и другие. Эти масла имеют практически одинаковые физико-химические свойства и методику применения. Они нетоксичны и хранятся в металлической таре при температуре не ниже минус 30 С. Антикоррозионные масла образуют с пресной водой стойкую непрозрачную эмульсию молочного цвета. Стойкость эмульсии зависит и от жесткости воды. Тонкая пленка антикоррозионного масла, покрывая поверхность охлаждения ДВС, предохраняет ее от коррозии, кавитационного разрушения и отложения накипи. Для сохранения этой пленки на поверхности охлаждения двигателя необходимо постоянно поддерживать рабочую концентрацию масла в охлаждающей воде около 0,5 % и применять воду определенного качества. Антикоррозионные эмульсионные масла широко применяются в системах охлаждения ДВС, применяемых на промысловых судах. Методы обработки охлаждающей пресной воды приводятся в инструкциях по эксплуатации двигателей. В системах охлаждения используются центробежные насосы с электроприводом. Иногда встречаются поршневые насосы, которые приводятся в действие от самого ДВС. Насосы охлаждения создают давление 0,1—0,3 МПа. Охлаждение современных среднеоборотных ДВС осуществляется в основном при помощи навешенных центробежных насосов забортной и пресной воды. Принципиальная схема замкнутой системы охлаждения двигателя приведена на рисунке: Замкнутый внутренний контур служит для охлаждения двигателя, а проточный внешний — для охлаждения холодильников пресной воды и масла. Циркуляция воды по замкнутому контуру осуществляется при помощи центробежного насоса 8 , подающего воду в нагнетательный трубопровод 10 , из которого по отдельным патрубкам она подводится к нижней части блока двигателя для охлаждения каждого цилиндра. Из верхней части блока по переливным патрубкам вода поступает в крышки цилиндров, а из них по отводящему трубопроводу направляется в водяной холодильник 4 и далее во всасывающий трубопровод насоса 8 . В системе охлаждения ДВС имеется терморегулятор 3 с термобаллоном 2 , который автоматически поддерживает необходимую температуру воды за счет перепуска части ее мимо водяного холодильника 4 . Первоначальное заполнение водой внутреннего контура производится через расширительный бак 1 . Туда же направляется паровоздушная смесь из отводящего трубопровода двигателя. Подача воды во внешний контур осуществляется автономным центробежным электронасосом 7 , который забирает воду из кингстона через спаренный сетчатый фильтр 9 с запорными клапанами и подает ее последовательно к масляному 5 и водяному 4 холодильникам. Из водяного холодильника вода сливается за борт. Перед масляным холодильником установлен терморегулятор 6 , который в зависимости от температуры масла регулирует количество воды, проходящее через холодильник. Температура и давление воды в системе охлаждения контролируется приборами местного и дистанционного контроля и системой аварийно-предупредительной сигнализации. Глава 11 ТЕХНОЛОГИЧЕСКОЕ ОБОРУДОВАНИЕ ДЛЯ ОБРАБОТКИ РЫБЫ ХОЛОДОМ 11.1 Оборудование для охлаждения рыбы перед замораживанием Оборудованием для охлаждения рыбы служат баки, ванны, чаны, механизированные установки и системы предварительного охлаждения. Системой предваритель­ного охлаждения называют совокупность аппаратов и трубопроводов. Баки и ванны применяют для охлаждения и хранения рыбы, пересыпая ее мелкодробленым или чешуйчатым льдом; в брезентовых чанах охлаждают рыбу в морской воде, добавляя к ней лед. В качестве емкости может быть также использован трюм судна, в который укладывают рыбу, послойно пе­ресыпанную льдом. Расход льда (в кг) на охлаждение рыбы определяют по формуле: где М — масса охлаждаемой рыбы, кг; с — теплоемкость рыбы, кДж/(кг-К); tн. tк-начальная и конечная температура рыбы, С С; 334,88 — теплота плавления водного льда, кДж/кг. Система предварительного охлаждения рыбы морской водой, охлажденной рассольными батареями, представ­лена на рисунке 11.1. Процесс охлаждения ускоряют, добавляя чешуйчатый лед. Оборудование системы состоит из цистерн-охлади­телей общей емкостью 10 т морской воды с рассольны­ми батареями, циркуляционных насосов, трубопроводов, цистерны загрязненной воды и льдогенераторов. В цистерны с водой, охлажденной до температуры -1°С, загружают пересыпанную льдом рыбу. Продол­жительность охлаждения в цистерне составляет 1,5 — % ч, В этих же цистернах рыбу можно хранить в течение 5-б ч. Выгружают рыбу из цистерн специальным элеватором. В системе предварительного охлаждения рыбы, при­веденной на рисунке 11.2 предусмотрено наличие специаль­ного водоохладителя. В систему включен приемный бункер, льдогенератор, цистерны-охладители, цистерны-аккумуляторы (стокеры), транспортер, водоохладители и циркуляционные насосы. Как охладить проточную воду в трубопроводе Рисунок 11.1 — Система предварительного охлаждения рыбы морской водой, охлажденной рассольными батареями, смонтированными в ваннах-цистернах.

Как охладить проточную воду в трубопроводе Рисунок 11.2 — Система предварительного охлаждения рыбы морской водой, предварительно охлажденной в водоохладителе: 1 — охладители; 2 — отделитель рыбы от воды; 3 — отстойный фильтр; 4 — льдогенератор; 5 — бункер емкостью 20 т; 6 – транспортер; 7 — трубопровод сжатого воздуха; 8 — бункеры емкостью 9 — стокеры; 10 — насосы. Выловленную рыбу без предварительной сортировки выгружают из трала в приемный бункер через люк, рас­положенный на приемной палубе. Одновременно рыба пересыпается чешуйчатым льдом, поступающим из льдо­генератора, установленного над бункером. Приемный бункер выполнен с наклонным дном и двумя люками для выгрузки рыбы. Выгруженную из бункера рыбу подвергают первой грубой сортировке, после чего передвижным транспорте­ром подают в цистерну-охладитель или цистерну-акку­мулятор, где она охлаждается или хранится в охлаж­денной до -1°С морской воде. Каждая цистерна, вмеща­ющая 9 т рыбы и 9 м 3 воды, имеет индивидуальный водоохладитель, центробежный насос, систему трубопрово­дов и пневматических клапанов. Водоохладитель выполнен в виде закрытого бака ем­костью 4 м 3 , в котором размещена гладкотрубная бата­рея непосредственного кипения аммиака. Управление работой стокеров осуществляется с цен­трального пульта управления. Перед загрузкой рыбы в систему цистерну-охладитель заполняют морской водой, температура которой в ре­зультате циркуляции по схеме цистерна-охладитель — насос — водоохладитель — цистерна-охладитель понижа­ется до -1 о С. Затем загружают рыбу, а циркуляция воды продол­жается по той же схеме. Перед выгрузкой рыбы система пневматических клапанов переключается таким образом, чтобы насос забирал воду из водоохладителя и нагнетал в цистерну-охладитель рыбы, а рыба вместе с водой по­ступает в водоотделитель (общий для четырех цистерн-охладителей-аккумуляторов). Вода из водоотделителя стекает в отстойник, а затем в водоохладитель. Охлажденная рыба поступает на тран­спортер второй сортировки и направляется на дальней­шую обработку. Конвейерная система охлаждения (рисунок 11.3) состоит из пластинчатого конвейера 6, циркуляционного насоса 1, водоохладителя 3 и водяных трубопроводов 4. Рыба поступает на пластинчатый транспортер, который прохо­дит через закрытый бункер 7, заполненный охлажденной морской водой. Морская вода циркулирует по схеме: за­крытый бункер 7 — насос 1- водоохладитель 3 — закрытый бункер. Изменение скорости движения конвейера позволяет охлаждать рыбу различных размеров.

Рыба в охладитель поступает через загрузочное устройство 5, охлажденная рыба отводится через разгрузочное устрой­ство 2. Конвейерная система проста в эксплуатации и эффективна. Система предварительного охлаждения рыбы на транспортере путем орошения ее морской охлажденной водой показана на рисунке 11.4. Оросительный рыбоохладитель представляет собой, сетчатый многоярусный транспортер, при движении ко­торого сверху вниз рыба охлаждается морской водой или хладоносителем. Источники: http://biopult. ru/sudoremont-ot-a-do-ya-sistema-ohlazhdeniya-dvs-sistemy-vozduhosnabzheniya-i/

Добавить комментарий